


## **DTSU666-H Smart Power Sensor**

# **User Manual**

Issue 01

Date 2018-05-18



#### Copyright © Huawei Technologies Co., Ltd. 2018. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**



HUAWEI and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### **Notice**

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

## Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://e.huawei.com

## **About This Document**

## **Purpose**

This document describes the DTSU666-H Smart Power Sensor in terms of its functions, electrical properties, and structure.

Figures provided in this document are for reference only.

## **Intended Audience**

This document is intended for:

- Sales engineers
- Technical support engineers
- Maintenance engineers

## **Symbol Conventions**

The symbols that may be found in this document are defined as follows.

**Symbol Conventions** 

| Symbol           | Description                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DANGER</b>    | Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.                                                           |
| <b>WARNING</b>   | Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.                                                          |
| <b>A</b> CAUTION | Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.                                                           |
| <b>⚠</b> NOTICE  | Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results. |
|                  | NOTICE is used to address practices not related to personal injury.                                                                                                  |

| Symbol | Description                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------------------|
| NOTE   | Calls attention to important information, best practices and tips.                                                   |
|        | NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration. |

# **Change History**

Changes between document issues are cumulative. The latest document issue contains all updates made in previous issues.

## Issue 01 (2018-05-18)

This issue is the first official release.

# **Contents**

| About This Document                          | 11 |
|----------------------------------------------|----|
| 1 Safety Precautions                         | 1  |
| 2 Overview                                   | 5  |
| 2.1 Product Overview                         | 5  |
| 2.2 Working Principles                       | 6  |
| 2.2.1 Conceptual Diagram                     | 6  |
| 2.2.2 Functions                              | 7  |
| 2.3 Application Scenarios                    | 10 |
| 2.4 Model Naming Conventions                 | 11 |
| 2.5 Product Structure                        | 11 |
| 3 System Maintenance                         | 13 |
| 3.1 Troubleshooting                          |    |
| A Technical Specifications                   | 15 |
| A.1 Environmental Specifications             | 15 |
| A.2 Main technical performance and parameter | 15 |
| A.2.1 Electrical parameter                   | 15 |
| A.2.2 Percentage error                       | 16 |
| A.2.3 Start                                  | 16 |
| A.2.4 Defluction                             | 16 |
| A.2.5 Other technical parameter              | 17 |
| A.3 EMC Specifications                       | 17 |
| A.4 Structure Specifications                 | 17 |
| A.5 Wiring terminal instruction              | 18 |
| B Acronyms and Abbreviations B               | 19 |

# Safety Precautions

#### **General Safety**

- Follow the precautions and special safety instructions provided by Huawei when operating this product. Personnel who plan to install or maintain Huawei devices must receive a thorough training, understand all necessary safety precautions, and be able to correctly perform all operations. The manufacturer will not be liable for any consequences that are caused by the violation of general safety regulations and device usage safety standards.
- Before performing operations, read through this manual and follow all the precautions to
  prevent accidents. The "DANGER", "WARNING", "CAUTION", and "NOTICE"
  statements in this document do not represent all the safety instructions. They are only
  supplements to the safety instructions.
- Operation personnel should comply with local laws and regulations. The safety instructions in this document are only supplements to local laws and regulations.
- Do not operate the product or handle cables during thunderstorms.
- Before operating the product, remove any conductors such as jewelry or watches.
- Use insulated tools during operations.
- Bolts should be tightened with a torque wrench and marked using red or blue color.
   Installation personnel should mark tightened bolts in blue. Quality inspection personnel should confirm if the bolts are tightened and then mark them in red. If screws or bolts used to secure the device are not tightened to the required torque, the device may fall from the mounting bracket.
- Follow specified procedures during installation and maintenance. Do not attempt to alter the device or deviate from the recommended installation procedures without prior consent from the manufacturer.
- Install the product in strict accordance with the quick guide.

#### **General Safety**

- Follow the precautions and special safety instructions provided by Huawei when
  operating this product. Personnel who plan to install or maintain Huawei devices must
  receive a thorough training, understand all necessary safety precautions, and be able to
  correctly perform all operations. Huawei will not be liable for any consequences that are
  caused by the violation of general safety regulations and device usage safety standards.
- Before performing operations, read through this manual and follow all the precautions to prevent accidents. The "DANGER", "WARNING", "CAUTION", and "NOTICE"

statements in this document do not represent all the safety instructions. They are only supplements to the safety instructions.

- Operation personnel should comply with local laws and regulations. The safety instructions in this document are only supplements to local laws and regulations.
- Do not operate the product or handle cables during thunderstorms.
- Before operating the product, remove any conductors such as jewelry or watches.
- Use insulated tools during operations.
- Bolts should be tightened with a torque wrench and marked using red or blue color.
   Installation personnel should mark tightened bolts in blue. Quality inspection personnel should confirm if the bolts are tightened and then mark them in red. If screws or bolts used to secure the device are not tightened to the required torque, the device may fall from the mounting bracket.
- Follow specified procedures during installation and maintenance. Do not attempt to alter the device or deviate from the recommended installation procedures without prior consent from the manufacturer.
- Install the product in strict accordance with the quick guide.

#### Disclaimer

The manufacturer shall not be liable for any consequence caused by any of the following events:

- Transportation damage
- The storage conditions do not meet the requirements specified in this document.
- Incorrect installation or use
- Installation or use by unqualified personnel
- Failure to obey the operation instructions and safety precautions in this document
- Operation in extreme environments which are not covered in this document
- The DTSU666-H operates beyond specified ranges.
- Unauthorized modifications to the product or software code or removal of the product
- Device damage due to force majeure (such as lightning, fire, and storm)
- The warranty expires and the warranty service is not extended
- Installation or use in environments which are not specified in related international standards

## **Personnel Requirements**

Only certified electricians are allowed to install, connect cables for, maintain, troubleshoot, and replace the DTSU666-H.

- Operation personnel should receive professional training.
- Operation personnel should read through this document and follow all the precautions.
- Operation personnel should be familiar with the safety specifications about the electrical system.
- Operation personnel should understand the composition and working principles of the grid-tied PV power system and local regulations.
- Operation personnel must wear proper personal protective equipment (PPE).

#### **Protect Labels**

- Do not scrawl or damage any warning labels on the DTSU666-H because these labels contain important information about safe operation.
- Do not scrawl or damage the nameplate on the back of the DTSU666-H because it contains important product information.

#### Installation

- Ensure that the DTSU666-H is not connected to a power supply or powered on before finishing installation.
- To allow proper heat dissipation and installation, maintain appropriate clearances between the DTSU666-H and other objects.

#### **Electrical Connections**



#### **DANGER**

Before connecting cables, ensure that the DTSU666-H is not damaged in any way. Otherwise, electric shocks or fire may occur.

- Ensure that all electrical connections comply with local electrical standards.
- Ensure that the cables used in a grid-tied PV system are properly connected and insulated and meet all specification requirements.

### Operation



#### **DANGER**

High voltage may cause an electric shock, which results in serious injury, death, or serious property damage from the DTSU666-H in operation. Strictly comply with the safety precautions in this document and associated documents when operating the DTSU666-H.

- Do not touch an energized DTSU666-H because it has a high temperature.
- Follow local laws and regulations when operating the device.

### Maintenance and Replacement



### **DANGER**

High voltage may cause an electric shock, which results in serious injury, death, or serious property damage from the DTSU666-H in operation. Therefore, before maintenance, power off the DTSU666-H and strictly comply with the safety precautions in this document and associated documents to operate the DTSU666-H.

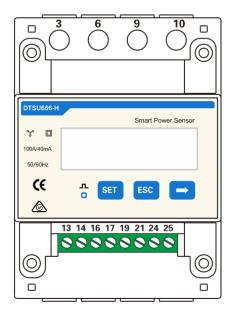
- Maintain the DTSU666-H with sufficient knowledge of this document and proper tools and testing devices.
- Temporary warning signs or fences must be placed to prevent unauthorized people from entering the site.
- The DTSU666-H can be powered on only after all faults are rectified. Failing to do so may escalate faults or damage the device.
- During the maintenance, observe ESD precautions and wear ESD gloves.

# 2 Overview

## 2.1 Product Overview

Type DTSU666-H Smart Power Sensor (here in after referred to as the "sensor") adopts large-scaled integrated circuit with digital sampling technology, specially designed for power monitoring and energy metering demands including power system, communication industry, construction industry, mainly applied into real-time measurement and display for parameters such as three phase voltage, three phase current, active power, reactive power, frequency, positive and reverse energy, four quadrant electric energy, etc. Adopting the standard DIN35mm din rail mounting, structural module design, it is characterized with small volume, easy installation and networking, etc. As a monitoring terminal product towards energy management system, it can be widely applied into internal power assessment and monitoring of the industrial and mining enterprises, hotels, schools, large public buildings.

This performance index of the meter conforms to the following relevant technical standard:

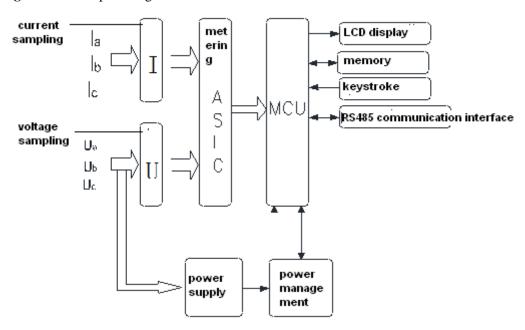

EN 61326-1: 2013; IEC 61326-1: 2012;

EN 61326-2-1: 2013; IEC 61326-2-1: 2012;

EN 61010-1: 2010; IEC 61010-1: 2010;

EN 61010-2-1: 2010; IEC 61010-2-1: 2010;

Figure 2-1 DTSU666-H




## 2.2 Working Principles

## 2.2.1 Conceptual Diagram

The instrument is composed of highly accurate metering integrated circuit (ASIC), management MCU, storage chip, RS485 communication module, etc. The conceptual diagram is shown in Figure 2-2.

Figure 2-2 Conceptual diagram



### 2.2.2 Functions

#### • Display function:

The displayed interfacial electrical parameter and power data are both for primary side data (which has already multiplied by the current and voltage ratios). The energy measurement value is displayed in seven bits, with the display range from 0.00 kWh to 999999.9 kWh.

Figure 2-3 Liquid crystal display

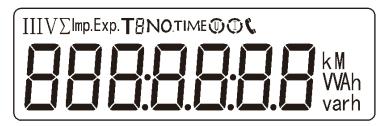



Table 2-1 Display (Auto loop)

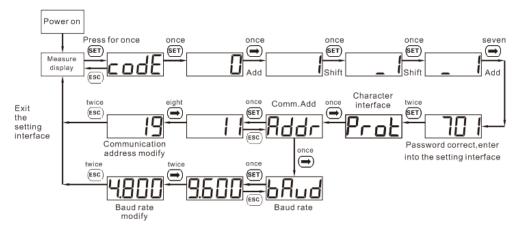
| No. | Display interface                      | Instruction                         | No. | Display interface      | Instructi<br>on                             |
|-----|----------------------------------------|-------------------------------------|-----|------------------------|---------------------------------------------|
| 1   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Imp. active<br>power<br>=10000.0kWh | 2   | 2345.67 <sup>k</sup> h | Exp.<br>active<br>energy<br>=2345.67<br>kWh |
| 3   | PF 329 1%                              | active power<br>=3.291kW            | 4   | UR 2200                | Phase A<br>voltage<br>=220.0V               |
| 5   | MP 550 k                               | Phase B<br>voltage<br>=220.1V       | 6   | <u>nc 5505.</u>        | Phase C<br>voltage<br>=220.20V              |
| 7   | (A 5000 ×                              | Phase A current =5.001A             | 8   | 16 5.00 lx             | Phase B current =5.001A                     |
| 9   | (C 5.002 ·                             | Phase C current =5.002A             | 10  | F 50.00                | Frequenc<br>y<br>Freq=50.<br>00Hz           |

MOTE

No button operation backlight is closed for 60 seconds. Auto loop Switch time = 5s.

Table 2-2 Display

| No. | Display interface        | Instruction                              | No. | Display interface | Instructi<br>on                                   |
|-----|--------------------------|------------------------------------------|-----|-------------------|---------------------------------------------------|
| 1   | 755433 <sup>k</sup> h    | Comb.active<br>energy<br>=7654.33kW<br>h | 2   | 1000000 kW h      | Imp.<br>active<br>power<br>=10000.0k<br>Wh        |
| 3   | 23456 7 <sup>k</sup> w h | Exp. active<br>energy<br>=2345.67kW<br>h | 4   | n 1-9.600         | None<br>parity,1<br>stop bit,<br>baud=960<br>Obps |
| 5   | I                        | Comm.Add<br>=011                         | 6   | UR 220.0°         | Phase A<br>voltage<br>=220.0V                     |
| 7   | NP 550 1                 | Phase B<br>voltage<br>=220.1V            | 8   | NC 550'5'         | Phase C<br>voltage<br>=220.20V                    |
| 9   | IR 5.000 A               | Phase A current =5.001A                  | 10  | I b 5.00 1 ·      | Phase B current =5.001A                           |
| 11  | [C 5.002 A               | Phase C current =5.002A                  | 12  | PŁ 329 1          | active<br>power<br>=3.291kW                       |
| 13  | PR (090%                 | Phase A<br>active power<br>=1.090kW      | 14  | Pb [101%          | Phase B<br>active<br>power<br>=1.101kW            |
| 15  | PC (100%                 | Phase C<br>active power<br>=1.100kW      | 16  | FŁ 0.500          | power<br>factor<br>=0.500<br>inductive            |
| 17  | FA (000                  | Phase A<br>power factor<br>PFa=1.000L    | 18  | Fb 0.500          | Phase B<br>power<br>factor<br>PFb=0.50<br>OL      |
| 19  | FC-0500                  | Phase C<br>power factor<br>PFc=0.500C    | 20  | F 50.00           | Frequency<br>Freq=50.0<br>0Hz                     |


- M NOTE
  - 1. Change By Key ",
  - 2. Comb. active energy = Imp. active energy Exp. active energy
- Programming function:

**Table 2-3** Programming function

| Param<br>eter | Value range | Description                                          |
|---------------|-------------|------------------------------------------------------|
| Prot          | 1: 645;     | Settings for communication stop bit and Parity bits: |
|               | 2: n.2;     | 1: Factory mode;                                     |
|               | 3: n.1;     | 2: None parity, 2 stop bits, n.2;                    |
|               | 4: E.1;     | 3: None parity, 1 stop bit, n.1;                     |
|               | 5: O.1;     | 4: Even parity, 1 stop bit, E.1;                     |
|               |             | 5: Odd parity, 1 stop bit, O.1;                      |
| bRud          | 0: 4.800;   | Communication baud rate:                             |
|               | 1: 9.600;   | 0: 4800bps;                                          |
|               |             | 1: 9600bps;                                          |
| Rddr          | 11-19       | Communication address                                |

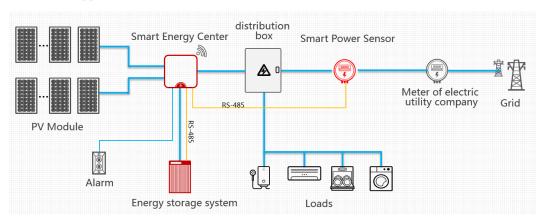
• Programming operation: button description: "SET" button represents "confirmation", or "Cursor shift" (when input digits), "ESC" button represents "Exit", "button represents "increase". The input password is (default to be 701).

Figure 2-4 Setting example for Modify communication address or baud rate



When modify digits," (ET)"can be used as cursor shift button; "(ESC)"represents exiting the setting interface or switch to the character interface from digit modification interface, restarting adding from zero after setting the digits to be the maximum value.

#### Communication function


The Sensor has a RS485 communication interface, the baud rate can be changed between 4800bps and 9600bps. The default Communication parameters is 9600bps, none parity bits and 1 stop bit, and communication addresses (see factory numbers or LCD display), support ModBus RTU protocol.

ModBus-RTU interface definition is defined in document "Huawei inverter matching meter Modbus interface definition description", Article 2.1 general signal definition table (Float), document version V100, release date 2018-01-29.

# 2.3 Application Scenarios

Scenario 1: The smart power sensor is used to realize power restriction of the power grid with charge and discharge control towards energy storage in the household inverter scheme, which is the core component for household energy management. It adopts RS485 communication, which can realize the electrical quantity measurement, energy metering function and in respond to the upper host for the real-time data query.

Figure 2-5 Application Scenarios



# 2.4 Model Naming Conventions

Figure 2-6 Model naming conventions

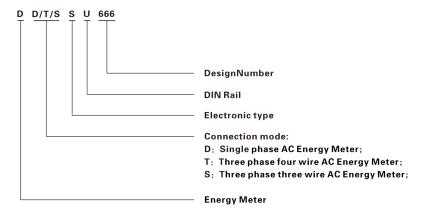
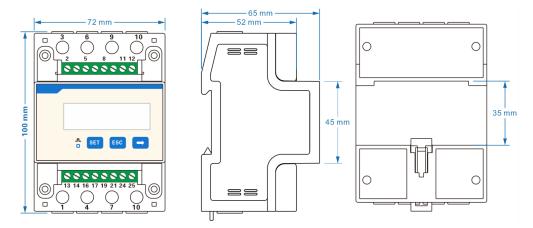



Table 2-4 Model specification

| Model No. | Accuracy<br>grade | Referenced<br>voltage | Current specificatio n | Instrument constant | Туре               |
|-----------|-------------------|-----------------------|------------------------|---------------------|--------------------|
| DTSU666-H | Active class      | 3×220/380<br>V        | 100 A/40<br>mA         | 800<br>imp/kWh      | Via<br>transformer |


■ NOTE

Please take the physical label as standard.

## 2.5 Product Structure

| Model No. | Module | Outline dimension (H×W×D) mm | Installation dimension (Din-rail) |
|-----------|--------|------------------------------|-----------------------------------|
| DTSU666-H | 4      | 72×100×65.5                  | DIN35 standard din-rail           |

**Figure 2-7** Product dimensions



# 3 System Maintenance

# 3.1 Troubleshooting

Table 3-1 Common alarms and troubleshooting measures

| Fault phenomenon                                 | Factor analysis                                                                                                                                                                                                                                                                                  | Elimination method                                                                                                                                                                                                                                              |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No display after the instrument being powered on | Incorrect wiring mode;     Abnormal voltage supplied for the instrument;                                                                                                                                                                                                                         | <ol> <li>If the wiring mode is incorrect, please connect based on the correct wiring mode (see the wiring diagram).</li> <li>If the supplied voltage is abnormal, please supply the voltage on the instrument specification.</li> </ol>                         |
| Abnormal RS485 communication                     | <ol> <li>The RS485         communication cable is         disconnected, short         circuit or reversely         connected.</li> <li>The address, baud rate,         data bit and parity bit of         the instrument is not in         accordance with the host         computer;</li> </ol> | <ol> <li>If any problems for the communication cable, please change the cable.</li> <li>Set the address, baud rate, data bit and parity bit of the instrument to be the same as the host computer through buttons and so as the "parameter setting".</li> </ol> |
| Power metering inaccuracy                        | <ol> <li>Wrong wiring, please check whether the corresponding phase sequence of voltage and current is correct.</li> <li>Check whether the high &amp; low end of current transformer inlet is reversely connected. Please observe the power, to be abnormal if any negative values.</li> </ol>   | For wrong wiring, please connect based on the correct wiring mode (see Connecting Diagram).                                                                                                                                                                     |

| Ш | NOT | E |
|---|-----|---|
|---|-----|---|

Contact the installation vendor if all failure analysis procedures listed above are completed and the fault still exists.

# A Technical Specifications

# **A.1 Environmental Specifications**

| Item                                | Specifications |
|-------------------------------------|----------------|
| Regulated working temperature range | -25°C to +60°C |
| Limited working temperature range   | -40°C to +70°C |
| Relative humidity (Annual average)  | ≤75% RH        |
| Atmospheric pressure                | 86-106 kPa     |

# A.2 Main technical performance and parameter

## A.2.1 Electrical parameter

| Regulated working voltage range            | 0.9-1.1 Un       |          |
|--------------------------------------------|------------------|----------|
| Extended working voltage range             | 0.8-1.15 Un      |          |
| Power consumption of voltage               | ≤ 1.5 W and 6 VA |          |
| Power consumption of                       | Ib < 10 A        | ≤ 0.2 VA |
| current                                    | Ib ≥ 10 A        | ≤ 0.4 VA |
| Data storage time after power interruption | ≥ 10 years       |          |

## A.2.2 Percentage error

Table A-1 Limited value of active percentage error of the energy meter on balanced load

| Туре                            | Current range                                                                                                                                | Power factor | The limited value of percentage error towards various grade of instruments |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|
| Connect via current transformer | $0.01I_n \leq I < 0.05I_n$                                                                                                                   | 1            | ±1.5                                                                       |
|                                 | $0.05I_n \leq I \leq I_{max}$                                                                                                                | 1            | ±1.0                                                                       |
|                                 | $0.02I_n \leq I < 0.1I_n$                                                                                                                    | 0.5L, 0.8C   | ±1.5                                                                       |
|                                 | $0.1I_n \leq I \leq I_{max}$                                                                                                                 | 0.5L, 0.8C   | ±1.0                                                                       |
| Notes                           | $I_n$ : Secondary rated current of the current transformer $I_b$ : calibrated current of energy meter $I_b$ : inductive; $I_b$ : capacitive; |              |                                                                            |

Table A-2 Limited value of active percentage error of the energy meter on unbalanced load

| Туре                            | Current range                                                                                                              | Power factor | The limited value of percentage error towards various grade of instruments |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|
| Connect via current transformer | $0.05$ In $\leq$ I $\leq$ Imax                                                                                             | 1            | ±2.0                                                                       |
|                                 | $0.1$ In $\leq$ I $\leq$ Imax                                                                                              | 0.5 L        | ±2.0                                                                       |
| Notes                           | In: Secondary rated current of the current transformer Ib: calibrated current of energy meter L: inductive; C: capacitive; |              |                                                                            |

## A.2.3 Start

Under the power factor of 1.0 and 2%In, the instrument can be started with continuous metering (if it is multiple phase instrument, then it has balanced load). If the instrument is designed based on measurement for bi-directional energy, then it is suitable for each direction of energy.

## A.2.4 Defluction

When applying voltage while the current circuit has no current, the test output of the instrument shall not produce a superfluous pulse. When testing, the current circuit shall be disconnected and the applied voltage of the voltage circuit shall be 115% of the referenced voltage.

The shortest testing time  $\triangle t$ :

$$\triangle$$
t  $\geq \frac{600 \times 10^6}{k \cdot m \cdot U_{g} \cdot I_{gg}}$  [min]

For instrument of class 1:

From the formula: k represents energy meter constant (imp/kWh), m represents the testing component quantity,  $U_n$  represents the referenced voltage (V),  $I_{max}$  represents the large current (A).

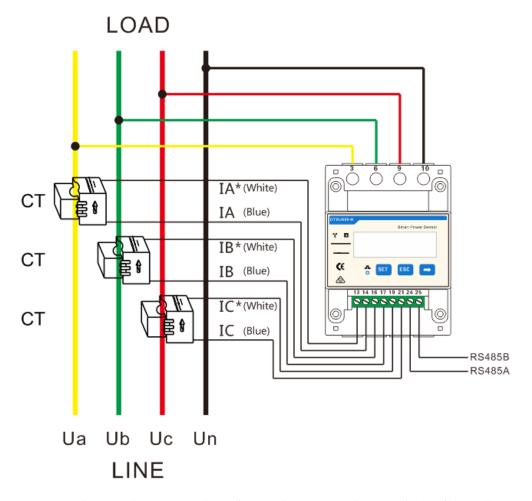
## A.2.5 Other technical parameter

| Scale range            | 0-999999.9 kWh |
|------------------------|----------------|
| Communication protocol | Modbus-RTU     |

## **A.3 EMC Specifications**

EMC performance of the meter conforms to the following relevant technical standard:

IEC 61326-1:2012, IEC 61326-2-1:2012


EN 61326-1:2013, EN 61326-2-1:2013

EN61000-3-2:2005/A2:2009, EN61000-3-3:2008

## **A.4 Structure Specifications**

| Item                   | Specifications                                                                                                   |  |
|------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Installation mode      | Directly stuck the sensor on the din rail and finally install it on the power distribution box.                  |  |
|                        | 1) When installing, please firstly stuck one side of the card slot and then forcibly stuck it on the din rail.   |  |
|                        | 2) When disassembling, please use a screwdriver to forcibly hold the flexible card and then take out the sensor. |  |
| Dimensions (H x W x D) | 72 mm x100mm x 65.5 mm (±0.5 mm)                                                                                 |  |
| Weight                 | $\leq$ 0.8 kg                                                                                                    |  |

# A.5 Wiring terminal instruction



- 1. Connect the Ua, Ub, Uc, Un voltage lines to the 3, 6, 9 and 10 terminals of the collector.
- 2. Connect current transformer outlets IA\*, IA, IB\*, IB, IC\*, IC to terminals 13, 14, 16, 17, 19, 21 of the collector.Connect.
- 3. RS485A and RS485B to the communication host.

# B Acronyms and Abbreviations B

D

**DC** direct current

 $\mathbf{E}$ 

**EFT** electrical fast transient

**EMI** electromagnetic interference

**EMS** electromagnetic susceptibility

**ESD** electrostatic discharge

 $\mathbf{M}$ 

MPPT maximum power point tracking

P

PLC power line communication

R

**RE** radiated emission

**RS** radiated susceptibility